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The f ini te-element  method (FEM) is applied to the solution of rheodynamic  problems.  As an 
example, the flow of non-Newtonian fluids in a channel is examined. 

Analytical and numerical  methods are  widely used for solving rheodynamic problems.  Up to now, the 
grid method has been considered to be the most  useful method for solving problems of this type.  

In recent  yea r s ,  the f ini te-element method (FEM) has been increasingly applied to such problems [1-4]. 
With its help, it is possible to solve successful ly problems of heat and m a s s  t r ans fe r  and r igid  body mechanics  
and to calculate flows of various media.  Compared to the grid method, the advantage of FEM lies in separat ion 
of the geometr ica l ly  complicated regions  into small  e lements  and in the simple manner  in which the boundary 
conditions are taken into account.  

The FEM can be based on variat ional  problems using Ri tz ' s  method or on differential equations using the 
method of we igh tedres idua l s fo r  a given physical  problem [5-10]. In some cases ,  it is possible to use energy 
balance [11]. 

Since for many hydrodynamic problems the variat ional  functional is not known, the method of weighted 
res iduals  (MWR) is used. Then, the two-dimensional  region ~,  x = (x D x2) E f~, examined is separated into 
d iscre te  par ts  (elements) ~e,  (e = 1 . . . .  , m). Within each of them or on their edges, nodes are  chosen x k E fie, 
at which the r e fe rence  values u k(e) = u(e)(x k) of the unknown function u(e)(x), x~ f~e, must  be determined.  The 
basic function N k(e) and the approximation 

u (e) (x) = N ~(e) (x) u k(~) (1) 

are introduced. 

The basis  functions in (1) must  satisfy the condition 

1 for k = l, 
NkCe) (xl) = 0 for. k =/= l 

for the x i element to be compatible at the nodes. 

Numerous types of elements,  with the help of which a good approximation is attained to solutions of 
problems of var ious  degrees  of complexity, have a l ready been rea l ized in pract ice  [12, 13]. The use of the 
FEM corresponding to the initial problem leads to a sys tem of l inear or nonlinear equations, whose matr ix  
has a band s t ruc ture  and is symmetr ica l  in cer tain eases .  

We will l imit  ourse lves  to studying the isothermal  flow of an incompress ib le  non-Newtonian medium. 
The general  formulation includes the following equations: 

continuity 

and motion 

VGI -~- 0 

(2) 

(3) 

dr: 
p - - ~  : pg: + ~j,~. (4) 

System (3) and (4) must  be supplemented by boundary and initial conditions, and, in addition, the s t r e s s  tensor  
~ij must be specified. It charac te r i zes  the behavior of the medium and it is expressed  by the theological  
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equation of s ta te .  

In a pure ly  v i scous  medium,  the s t r e s s  is uniquely r e l a t ed  to the s t ra in  veloci ty  

~ = F (D~). 

The s imp le s t  Newtonian rheologica l  equation of s tate  has the fo rm 

oij = - -  p61j + 2~D~j. 

Here ,  ~? = const  and 

(5) 

(6) 

1 
Di j=  - 7  (vi, j + vj,~). (7) 

Substituting (7) into (4) taking into account (3) leads  to the N a v i e r - S t o k e s  equation 

p (vj,~ § v~vj,~) = p g j - -  p,~ + ~lvj,~. (8) 

Relation (6) cannot be genera l ized  to such media  as solut ions,  suspens ions ,  me l t s ,  etc.  

In o r d e r  to desc r ibe  the c h a r a c t e r i s t i c s  of flowing media  of this type,  nonlinear  theologica l  equations of 
s ta te  a r e  used .  In choosing them,  the pa r t i cu la r  p r o p e r t i e s  (viscosi ty,  e las t ic i ty ,  plast ici ty)  exhibited by the 
medium and how well they a re  desc r ibed  by the model  should be noted. In calculat ions,  equations of s ta te  for  
pure ly  v iscous  media ,  taking into account s t ruc tu ra l  v i scos i ty ,  dflatancy,  thixotropy,  and rheopexy,  a r e  m o s t  
often u s e d .  They re f l ec t  the dependence of the v i scos i ty  on the s t ra in  veloci ty  as well  as on t ime.  

Such equations,  often empi r ica l ,  a re  useful  for  descr ib ing  s imple  shear  flows and a re  based on the II in-  
va r i an t  of the s t r a in  veloci ty  t ensor  for two-dimens iona l  and th ree -d imens iona l  flows. 
ing a r e  used: 

O s t w a l d - d e  Ville power law 
n - - I  

~q (II) = ko (4II) 2 (9) 

For  example ,  the fol low- 

and the P r a n d t l - E y r i n g  law 

where  1/= 2DijDij. 

~l (II) = A arcsin h (~f4-]]/B) (10) 
V ~ / B )  ' 

If  it is n e c e s s a r y  to take into account  e las t ic  or  v i scoe las t i c  p r o p e r t i e s ,  then it i s  n e c e s s a r y  to use  the 
equation of s ta te  which is  der ived e i ther  f r o m  fundamental  Hooke and Newton (e.g., Maxwel l ' s  model) models  
or  d i rec t ly  f r o m  the mechan ics  Of continuous media  with the help of physical  and functional analyt ic  ana lys i s  
(e.g., Co l emann-No l l ) .  

In what follows, the c h a r a c t e r i s t i c s  of flows a re  calcula ted with the help of the FEM only for pure ly  
v i scous  media .  The applicat ion of the FEM to non-Newtonian or  v i scoe la s t i c  media  is examined in [1, 3, 12-16]. 

In o r d e r  to analyze the two-d imens iona l  p rob l em,  the equations of motion (8) and continuity (3) and the 
dependent v a r i a b l e s ,  veloci ty  v i (i = 1, 2) and p r e s s u r e  p, a r e  used.  The use  of v i and p ins tead of the s t r e a m  
function and vor t ic i ty  or only the s t r e a m  function has cer ta in  advantages:  the boundary conditions a r e  eas i ly  
formula ted ,  the p r e s s u r e s  immedia te ly  de te rmined ,  and weaker  conditions a re  imposed  on the bas i s  functions.  

The v a r i a b l e s  chosen are  approx imated  according  to Eq. (1): 

v~----- N h v~, p : Nhp h, (11) 

and, in addition, it is  not n e c e s s a r y  for the veloci ty  and p r e s s u r e  bas i s  functions to coincide.  They can be 
chosen so that  they co r re spond  to the r equ i r ed  quality of the approximat ion .  

In p rev ious ly  published pape r s ,  i t  has  been shown that  the bes t  r e s u l t s  a r e  obtained with a quadrat ic  ap-  
proximat ion  of the veloci ty  and l inear  approx imat ion  of the p r e s s u r e .  For  purposes  of s implif icat ion,  the s a m e  
bas i s  functions a r e  used for both unknowns, s ince higher o rder  de r iva t ives  in the equations for both unknowns 
with par t ia l  in tegrat ion have the same  o rde r .  
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Using one of the methods  of weighted r e s idua l s ,  in pa r t i cu la r ,  Ga le rk in ' s  method with N k as l i n ea r l y  
independent weighting functions,  and (11) it is poss ib le  to obtain th ree  equations for v i and p at each node x k 
in the region of flow. 

Thus,  the xj component  of Eq. (8) at the K-th  node af ter  in tegra t ion over  the given e lement  ~ e  has  the 
fo rm 

, viJv ~v , i - -g j )+  ,IP L] "+ q N , i N , i  ~]N N, i  v i -" (12) 
e=l ~qe g~e oe 

and, in addition, w e is  the boundary of the reg ion  ~ e  and is made up of all e lements  to which the K- th  node is 
r e l a t ed .  

The integral  over  the sur face  is the flow Vl?n) w i t h t h e w e i g h t i n g .  " " " function N k and is calcula ted only when 
the e lement  is a pa r t  of the boundary co of the re~ion  ~ a n d t h e  normal  der iva t ive  of the veloci ty  is speci f ied  on 
it. However ,  the in tegra l  need not be taken into account [19]. 

Among the poss ib le  boundar ies  of the region fl, it i s  n e c e s s a r y  to distinguish c l ea r ly  between i m p e r m e -  
able w 1 and p e r m e a b l e  w 2 boundar ies .  The boundary conditions can be as  follows: the values  of the veloci ty ,  
su r face  fo rces ,  and normal  der iva t ive  of the veloci ty  a re  specif ied.  The choice of pa r t i cu la r  boundary  condi-  
t ions depends on the geomet r i c ,  hydraul ic ,  or  physica l  a spec t s  of the p rob l em.  

The following re la t ion  is sa t i s f ied  by the equation of continuity (3): 

M M 

X X = 0 (13) 
e = I  .qe e= l  ~e 

For  highly v iscous  non-Newtonian media ,  the assumpt ion  that v i scous  fo rces  g rea t Iy  exceed iner t ia l  f o r ce s  
and volume fo rces  is valid.  For  this r ea son ,  in what follows, we will drop both the convective t e r m s  and the 
t e r m  containing the volume foree .  

F r o m  (12), for  s ta t ionary  flow, follows 

M 

~IN Nd O. (14) E .f  N.iN, 
e=  1 ~e oe 

After  integrat ing,  for each node in the two-d imens iona l  ease ,  we obtain three  a lgebra ic  equations.  Examining  
all nodes in the reg ion  ~2, we a r r i v e  at the s y s t e m  

IlAl[ {6} = {V}, (15) 

and, in addition, {6} is  the va r i ab l e  node vec to r ,  defined by the re la t ion  

{6 k} = 

p~ ]  

(16) 

The m a t r i x  [[A[[ is not s y m m e t r i c a l  and has  a band s t ruc tu re .  The e lement  a KL, the minor  fo rmed  f r o m  
the ma t r ix ,  has the fo rm 

where  

A t(L = 

aKZ= S AKLdxtdxz' (17) 
~e 

N ~; N L ~l (N, K,/Vfl - ~  , 2  ,2 )  

K L N N , 1  

0 

0 /~ L N N , I  

K L N N ~  0 

K L • N K N L , N ~ N  L ~I(N,IN,I  T ,2 ,2) ,2 

(18) 

The vec to r  on the r ight  side of  Eq. (15) has  the f o r m  
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7.)1 ,n ) 
{F x} = ~ ~IN ~: 0 do) ~. 

~e U2, n 
(19) 

The region of flow ~ is separa ted  into t r i angu la r  e l emen t s  with nodes at the v e r t i c e s .  A l inear  poly-  
nomial ,  whose coeff icients  a re  e x p r e s s e d  in t e r m s  of the coordinates  of the v e r t i c e s  of the t r iangle ,  a r e  used 
as the bas i s  function [17] (Fig.  1): 

N c* = (a ~ + be*x, + c~x2)/A, (20) 

where 

and 

a = = x t ~ x ~ - x v x ~  b ~ c = = x T  (21) 

11 x] ~ 
A-= det 1 x~ x2~ 

t x~ x~ 

(22) 

The other  coeff icients  a r e  obtained by cyclic pe rmuta t ion  of the indices .  The use of t r iangular  coordinates  
p e r m i t s  ca r ry ing  out the integrat ion over  the sur face  of the e lement  eas i ly  [17]. 

The p r ede t e rm i ned  value at the nodes can be taken into account by changing the vec tor  {F} and the ma t r i x  
IIAl}. For  example ,  le t  the veloci ty  v 1 at the edge node n equal v. Then, for the vector  on the r igh t  side, the 
following express ion  is valid: 

-ill F i - - a i ~ v  ( i = l  . . . . .  n - - l ,  n +  1, . . . ,  M), P~= '~ .  (23) 

Here  M is  the number  of equations.  

The e lements  of the cor responding  rows  and columns of the ma t r i x  a re  equated to zero ,  while the d ia -  
gonal e lement  is equated to unity [18]. The l inear  sys t em of equations obtained is  solved by the Gaussian e l imin -  
ation method.  

For Newtonian media ,  the v i scos i ty  ~? is the s ame  at  all  nodal points.  In non-Newtonian media ,  the 
v i scos i ty  depends on the shear  s t r a in  veloci ty  t ensor ,  i .e . ,  i t  is cha rac t e r i zed  by the second invar iant .  For  
this r ea son ,  the m a t r i x  ITAH of the s y s t e m  is also a function of the second invar iant  II 

IIA (0 (II))ll {5} = {F}. (24) 

In this case ,  the s y s t e m  of equations mus t  be solved by i tera t ion.  

Start ing f rom the approx imate  value H 0 for II, the Newtonian approximat ion can be wri t ten as follows: 

{5}, = NA (~1 (IIo))[]-i{F} �9 (25) 

F r o m  here ,  for each node, it is  poss ib le  to calculate  II 1 and the function ~? (II1) with the help of the v i scos i ty  
function given above, e.g.,  f r om expres s ions  (9) or (10). The next approximat ion then has the fo rm 

{a}~ = IIA (o (II,.))1[-, {F} (26) 

or  for a r b i t r a r y  o rde r  

{5}m+i = ][A (~1 (IIm)[[ - '  {F}. (27) 

I tera t ion t e rmina t e s  when the following condition is sat isf ied:  

[fvT+m - -  v?ll  
max < e. (28) 

i=l  ..•NO IIV'~+'I] 
The solution a lgor i thm was f i r s t  checked out with the help of a s imple  p r o g r a m  [20], wri t ten in the 

FORTRAN language for  the BESM-6 computer .  The band s t ruc tu re  of the ma t r ix  UAll was not taken into account 
and external  s torage  was not used,  pe rmi t t ing  p rocess ing  only 50 nodes (150 unknowns). The slow flow of a non- 
Newtonian fluid in flat,  as  well  as a s y m m e t r i c  converging,  channels was invest igated.  The physical  p a r a m e t e r s  
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were set arbitrarily and did not characterize any particular substance. 

The numerical results for the flow of a non-Newtonian medium in a fiat channel, as shown in Fig. 2, 
with equidistant positions of the elements, independent of their number, determine the exact analytical solu- 

tion. Deviations appear for nonequidistant positioning of the elements, which can be explained by the different 
geometrical dimensions of the triangular element, as well as by the linear approximation of the velocity 
within it. 

The non-Newtonian behavior of the medium is conveyed more or less well according to the choice of 
theological parameters, as well as to the number and positioning of triangular elements. Thus, it is evident 
h'om Fig. 2 that in spite of the fact that the theological parameters and pressure gradients with different 
numbers of elements are the same, deviations are observed (in the example being examined, of the order of 
~8%). These deviations increase with an increase in pressure gradient as well as with the non-Newtonian 
nature of the medium. This behavior can be explained by the linear approximation of the velocity and by 
the discontinuity of the velocity gradient between elements observed in this case. 

It may be stated that as the number of elements increases and the given pressure gradient decreases, 
as well as the volume flow rate, we can expect large nonlinearity in using the iteration method chosen. However, 
further analytic and numerical studies are necessary to evaluate the relations completely. 

Figure 2 illustrates the choice of the number of iteration steps in order to attain an accuracy g of the 
order of 10 -4, as well as the necessary computational time for a single iteration step. 

The results, obtained for the flow of non-Newtonian media in an asymmetric converging channel, show 
that the use of a simple program permits obtaining the correct qualitative predictions for the change in flow 
rate with given pressure gradient. It is as yet impossible to compare the numerical results obtained with a 
closed-form analytic solution. 

It is evident from Fig. 3 that in spite of an identical fixed pressure gradient and equality of the channel 
outlet and inlet height ratios h/H, appreciably different flow rates are attained due to the different form of the 
converging channel. In the examples presented, in going over from the geometry in Fig. 3a to that of Fig. 3c, 
the flow rate increases by 30% and by 20% with a transition from 3b to 3e. 

The pressure distribution at the walls of the converging channel agrees qualitatively with the values com- 
puted. Therefore, geometries with pressure decreasing monotonically with length (Fig. 3c) are preferable from 
the point of view of the best characteristics of the flow rate (head). The nonlinearity in the pressure change at 
the channel inlet with height h is related to the development of flow up to the establishment of completely 
stabilized velocity fields. 

In order to estimate the influence of the positioning of the elements on the numerical results, the geom- 
etry in Fig. 3b was separated into elements, which, in contrast to Fig. 3a, were positioned similarly to the outer 
geometry of the channel. Then, for Newtonian fluids, a deviation in the flow rate up to 18% was obtained. The 
results turned out to be more accurate in locations where the region is subdivided more exactly, i.e., at the 
channel inlet (Fig. 3b) and at the channel outlet (Fig. 4). 

For a non-Newtonian flow, the magnitude of the deviation was up to 8%. Eight iterations were required to 
attain the limiting fixed accuracy g for the geometry in Fig. 3b, while seven iterations were required for geom- 
etry in Fig. 4. Six seconds were used for each step of the iteration. 

Thus, we can conclude that the program used permits obtaining only qualitative estimates of the flow 
characteristics. The limiting accuracy cannot be attained in this case due to the small number of nodes chosen. 
For this reason, it is not possible to separate accurately the region of the flow into elements and, therefore, 
increase the accuracy of the calculation. 

In developing improved programs, the symmetry properties (integration over an element in the region 
in Eq. (12)) or the band nature of the matrix for the system or the band structure of the unsymmetrical matrix 
IIAI] (the basic assumption for taking into account convective terms in Eq. (8) using iteration, Picard's itera- 
tion) is used or Hood's frontal method is used to solve the problem [21]. Depending on the type of program, 
the number of unknowns increases by a factor of 3-6 using a single magnetic core storage device in BESM-6 
and by a factor of 10-15 in using all the external storage devices. 
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Fig. 2. Velocity distr ibution in a fiat channel: 
I) Newtonian medium; II} non-Newtonian medium; 
1) 34 nodes,  32 e lements ,  5 i te ra t ions ,  t ime for 
a single i terat ion is 3.8 see; 2) 26, 24, 6, and 3, 
respec t ive ly ;  3) 18, 16, 4, and 2, r e spec t ive ly  
(r/0-- 5 N . s e c . c m  -2, T/I= 50 N . s e c . c m  - 2 , n =  
0.5; p x=0.009 N .cm-3).  

- 

Fig. 3. Velocity and p r e s s u r e  fields in a non- 
Newtonian medium with an a sy m m et r i c  con-  
verging channel: a, b, and c) eight i tera t ions .  
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Fig. 4. Velocity and p r e s s u r e  distr ibution in a non-Newton- 
ian medium with the a s y m m e t r i c  converging channel geom- 
e t ry  of Fig. 3e with a different  distribution of e lements  (7 
i terat ions):  77o = 5 N.  s e c .  cm-2; 71 = 50 N" sec .cm-2;  n = 
0.5; H =  0.3 cm; h =  0.1 cm; L =  1.6 cm; Pl = 0.0.01 N.cm2;  
P2 = 0.001 N" era-2; the rheological  pa rame te r  var ies  as ~ = 
70 -~711"]'-~/2l(n-1). 

At the same t ime,  for calculat ions involving non-Newtonian media,  it is neces sa ry  to use h ighe r -o rde r  
e lements  ( tr iangular  e lement  with six nodes) in o rde r  to sat isfy the r equ i remen t  of continuity of the f i rs t  
der ivat ive  between e lements .  With the help of a local general izat ion of four t r iangular  e lements  to a rec tangular  
e lement ,  af ter  el iminating internal  angular var iab les ,  the number of unknowns can be decreased  without loss  
of accuracy .  

It should be emphasized that in this work only some of the possibi l i t ies  of using the method of finite 
e lements  in hydrodynamics  have been discussed.  Future  work, apparent ly,  must  extend the finite element  
method of v i scoe las t ic  media.  

N O T A T I O N  

IIAH, ma t r ix  of the system;  A, surface;  A and B, mate r ia l  cha rac te r i s t i c s ;  Dij s t ra in  veloci ty tensor;  e, 
an element;  {F}, r igh t - s ide  vector ;  H, height of the inlet section; h, height of the outlet section; k0, consis tency 
factor ;  M, number  of e lements  re la t ing  to a single node; m, maximum number of e lements;  N, basis  function; 
n, index of the flow; p, p r e s su re ;  t,. t ime; u, function; u], r e f e r e n c e  value of the function; Vk, veloci ty vector ;  
x - x  1 , x2, Car tes ian  coordinates;  x], coordinates  of the nodal point; {5}, var iable  vector  of a node; 5ij, Kroneck-  
e r ' s  symbol; ~? and ~?0, v iscos i t ies ;  p ,  density; (rij , s t r e s s  tensor ;  II, second invariant  of the s t ra in  velocity;  
KNO, maximum number of nodes.  
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T E M P E R A T U R E  F L U C T U A T I O N S  IN A 
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a n d  G .  P .  Y a s n i k o v  

D I S P E R S E  M E D I U M  

UDC 541.182:536-12.2;621.1.016 

Large - sca l e  t empera tu re  fluctuations in a the rmal ly  nonuniform d isperse  medium are  analyzed 
by the methods of the thermodynamics  of i r r ev e r s i b l e  p ro ce s se s .  Calculated r e su l t s  a re  com-  
pared with exper imental  data. 

By part icipat ing in motions of var ious  sca les ,  pa r t i c l e s  of a the rmal ly  nonuniform disperse  medium can 
" t ranspor t  t empera tu re"  as an iner t  sca lar  admixture .  Consequently,  in cer ta in  regions of the system local  
large scale t empera tu re  fluctuations will a r i se  with intensi t ies  appreciably g rea te r  than the level of equi l ibr ium 
thermal  agitation. Convective heat t r ans fe r  between par t i c les  and the continuous medium must  affect the d is -  
sipation of these fluctuations. The damping of l a rg e - s ca l e  fluctuations can be analyzed within the f ramework  
of the thermodynamics  of i r r e v e r s i b l e  p r o c e s s e s  (TIP), the thermodynamic  theory  of which was developed in 
[1] and discussed in detail in [2]. The theory  was applied to hydrodynamic fluctuations in [3, 4]. 

The cor re la t ion  function of t empera tu re  fluctuations T T can be writ ten in the form 
Y 

r  = l i ra  T'I ff T ' ( t ) T ' ( t ' ) d t ' ,  ~ -+~o ,  (1) 

0 

where < . .  o > denotes probabil i ty averaging of all possible values of T '  at  t imes  t and t ' .  T' is the average 
value of T '  for t > 0 under the condition that this quantity had a given value T' at t = 0. Thus ~0(t) takes account 
of the previous h is tory  of the sys tem f rom t = - ~  to t = 0. 

We consider  the damping os t empera tu re  fluctuations T' or a continuous medium and T 1' of par t i c les  by 
TIP methods [1, 2, 5]. The phenomenological  equation for them can be writ ten in the form [2] 

x = - - M x ,  x =  �9 ( 2 )  

LT; / 

The mat r ix  M is evaluated in [6]: 

aoC-i--CXoC -i ) 6~(1--e)  6a 
M = an C-1 = ' a~ 

__ aoC~l (zoCT1 ' dpc8 dpici 
(3) 
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